Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2025
-
Abstract Two covalent organic frameworks consisting of carbazolylene‐ethynylene shape‐persistent macrocycles with azine (MC‐COF‐1) or imine (MC‐COF‐2) linkages were synthesized via imine condensation. The obtained 2D frameworks are fully conjugated which imparts semiconducting properties. In addition, the frameworks showed high porosity with aligned accessible porous channels along the z axis, serving as an ideal platform for post‐synthetic incorporation of I2into the channels to enable electrical conductivity. The resulting MC‐COF‐1 showed an electrical conductivity up to 7.8×10−4 S cm−1at room temperature upon I2doping with the activation energy as low as 0.09 eV. Furthermore, we demonstrated that the electrical properties of both MC‐COFs are switchable between electron‐conducting and insulating states by simply implementing doping‐regenerating cycles. The knowledge gained in this study opens new possibilities for the future development of tunable conductive 2D organic materials.more » « less
-
Abstract Herein, the synthesis of Cu3(HAB)x(TATHB)2‐x(HAB: hexaaminobenzene, TATHB: triaminotrihydroxybenzene) is reported. Synthetic improvement of Cu3(TATHB)2leads to a more crystalline framework with higher electrical conductivity value than previously reported. The improved crystallinity and analogous structure between TATHB and HAB enable the synthesis of Cu3(HAB)x(TATHB)2‐xwith ligand compositions precisely controlled by precursor ratios. The electrical conductivity is tuned from 4.2 × 10−8to 2.9 × 10−5 S cm−1by simply increasing the nitrogen content in the crystal lattice. Furthermore, computational calculation supports that the solid solution facilitates the band structure tuning. It is envisioned that the findings not only shed light on the ligand‐dependent structure–property relationship but create new prospects in synthesizing multicomponent electrically conductive metal‐organic frameworks (MOFs) for tailoring optoelectronic device applications.more » « less
An official website of the United States government
